Solve for x_1
x_{1}=\frac{\left(\sqrt[3]{13}\times 3^{\frac{4}{3}}+39^{\frac{2}{3}}+9\right)J}{4}
Solve for J
J=\frac{\left(\sqrt[3]{39}-3\right)x_{1}}{3}
Share
Copied to clipboard
J=\left(\sqrt[3]{\frac{13}{9}}-\frac{1}{1}\right)x_{1}
Reduce the fraction \frac{26000}{18000} to lowest terms by extracting and canceling out 2000.
J=\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}
Anything divided by one gives itself.
J=\sqrt[3]{\frac{13}{9}}x_{1}-x_{1}
Use the distributive property to multiply \sqrt[3]{\frac{13}{9}}-1 by x_{1}.
\sqrt[3]{\frac{13}{9}}x_{1}-x_{1}=J
Swap sides so that all variable terms are on the left hand side.
\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}=J
Combine all terms containing x_{1}.
\frac{\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}}{\sqrt[3]{\frac{13}{9}}-1}=\frac{J}{\sqrt[3]{\frac{13}{9}}-1}
Divide both sides by \sqrt[3]{\frac{13}{9}}-1.
x_{1}=\frac{J}{\sqrt[3]{\frac{13}{9}}-1}
Dividing by \sqrt[3]{\frac{13}{9}}-1 undoes the multiplication by \sqrt[3]{\frac{13}{9}}-1.
x_{1}=\frac{J}{\frac{\sqrt[3]{13}\times 9^{\frac{2}{3}}}{9}-1}
Divide J by \sqrt[3]{\frac{13}{9}}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}