Skip to main content
Solve for x_1
Tick mark Image
Solve for J
Tick mark Image

Similar Problems from Web Search

Share

J=\left(\sqrt[3]{\frac{13}{9}}-\frac{1}{1}\right)x_{1}
Reduce the fraction \frac{26000}{18000} to lowest terms by extracting and canceling out 2000.
J=\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}
Anything divided by one gives itself.
J=\sqrt[3]{\frac{13}{9}}x_{1}-x_{1}
Use the distributive property to multiply \sqrt[3]{\frac{13}{9}}-1 by x_{1}.
\sqrt[3]{\frac{13}{9}}x_{1}-x_{1}=J
Swap sides so that all variable terms are on the left hand side.
\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}=J
Combine all terms containing x_{1}.
\frac{\left(\sqrt[3]{\frac{13}{9}}-1\right)x_{1}}{\sqrt[3]{\frac{13}{9}}-1}=\frac{J}{\sqrt[3]{\frac{13}{9}}-1}
Divide both sides by \sqrt[3]{\frac{13}{9}}-1.
x_{1}=\frac{J}{\sqrt[3]{\frac{13}{9}}-1}
Dividing by \sqrt[3]{\frac{13}{9}}-1 undoes the multiplication by \sqrt[3]{\frac{13}{9}}-1.
x_{1}=\frac{J}{\frac{\sqrt[3]{13}\times 9^{\frac{2}{3}}}{9}-1}
Divide J by \sqrt[3]{\frac{13}{9}}-1.