Solve for I
\left\{\begin{matrix}I=\frac{\arctan(x)+x^{3}+С}{I_{k}}\text{, }&I_{k}\neq 0\\I\in \mathrm{R}\text{, }&С=-\arctan(x)-x^{3}\text{ and }I_{k}=0\end{matrix}\right.
Solve for I_k
\left\{\begin{matrix}I_{k}=\frac{\arctan(x)+x^{3}+С}{I}\text{, }&I\neq 0\\I_{k}\in \mathrm{R}\text{, }&С=-\arctan(x)-x^{3}\text{ and }I=0\end{matrix}\right.
Share
Copied to clipboard
I_{k}I=\arctan(x)+x^{3}+С
The equation is in standard form.
\frac{I_{k}I}{I_{k}}=\frac{\arctan(x)+x^{3}+С}{I_{k}}
Divide both sides by I_{k}.
I=\frac{\arctan(x)+x^{3}+С}{I_{k}}
Dividing by I_{k} undoes the multiplication by I_{k}.
II_{k}=\arctan(x)+x^{3}+С
The equation is in standard form.
\frac{II_{k}}{I}=\frac{\arctan(x)+x^{3}+С}{I}
Divide both sides by I.
I_{k}=\frac{\arctan(x)+x^{3}+С}{I}
Dividing by I undoes the multiplication by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}