Solve for R_1
\left\{\begin{matrix}R_{1}=-\frac{5V}{V-10I_{T}}\text{, }&V\neq 0\text{ and }I_{T}\neq \frac{V}{10}\\R_{1}\neq 0\text{, }&I_{T}=0\text{ and }V=0\end{matrix}\right.
Solve for I_T
I_{T}=\frac{V\left(R_{1}+5\right)}{10R_{1}}
R_{1}\neq 0
Share
Copied to clipboard
I_{T}\times 10R_{1}=5V+R_{1}V
Variable R_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10R_{1}, the least common multiple of 2R_{1},10.
I_{T}\times 10R_{1}-R_{1}V=5V
Subtract R_{1}V from both sides.
\left(I_{T}\times 10-V\right)R_{1}=5V
Combine all terms containing R_{1}.
\left(10I_{T}-V\right)R_{1}=5V
The equation is in standard form.
\frac{\left(10I_{T}-V\right)R_{1}}{10I_{T}-V}=\frac{5V}{10I_{T}-V}
Divide both sides by 10I_{T}-V.
R_{1}=\frac{5V}{10I_{T}-V}
Dividing by 10I_{T}-V undoes the multiplication by 10I_{T}-V.
R_{1}=\frac{5V}{10I_{T}-V}\text{, }R_{1}\neq 0
Variable R_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}