Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{I\left(3^{2}+\frac{2^{6}}{2^{4}}+\frac{6^{6}}{6^{5}}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 7 to get 2.
\frac{I\left(3^{2}+2^{2}+\frac{6^{6}}{6^{5}}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 4 from 6 to get 2.
\frac{I\left(3^{2}+2^{2}+6^{1}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 6 to get 1.
\frac{I\left(3^{2}+2^{2}+6^{1}+2^{1}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 7 from 8 to get 1.
\frac{I\left(9+2^{2}+6^{1}+2^{1}\right)}{3}
Calculate 3 to the power of 2 and get 9.
\frac{I\left(9+4+6^{1}+2^{1}\right)}{3}
Calculate 2 to the power of 2 and get 4.
\frac{I\left(13+6^{1}+2^{1}\right)}{3}
Add 9 and 4 to get 13.
\frac{I\left(13+6+2^{1}\right)}{3}
Calculate 6 to the power of 1 and get 6.
\frac{I\left(19+2^{1}\right)}{3}
Add 13 and 6 to get 19.
\frac{I\left(19+2\right)}{3}
Calculate 2 to the power of 1 and get 2.
\frac{I\times 21}{3}
Add 19 and 2 to get 21.
I\times 7
Divide I\times 21 by 3 to get I\times 7.
\frac{I\left(3^{2}+\frac{2^{6}}{2^{4}}+\frac{6^{6}}{6^{5}}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 7 to get 2.
\frac{I\left(3^{2}+2^{2}+\frac{6^{6}}{6^{5}}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 4 from 6 to get 2.
\frac{I\left(3^{2}+2^{2}+6^{1}+\frac{2^{8}}{2^{7}}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 5 from 6 to get 1.
\frac{I\left(3^{2}+2^{2}+6^{1}+2^{1}\right)}{3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 7 from 8 to get 1.
\frac{I\left(9+2^{2}+6^{1}+2^{1}\right)}{3}
Calculate 3 to the power of 2 and get 9.
\frac{I\left(9+4+6^{1}+2^{1}\right)}{3}
Calculate 2 to the power of 2 and get 4.
\frac{I\left(13+6^{1}+2^{1}\right)}{3}
Add 9 and 4 to get 13.
\frac{I\left(13+6+2^{1}\right)}{3}
Calculate 6 to the power of 1 and get 6.
\frac{I\left(19+2^{1}\right)}{3}
Add 13 and 6 to get 19.
\frac{I\left(19+2\right)}{3}
Calculate 2 to the power of 1 and get 2.
\frac{I\times 21}{3}
Add 19 and 2 to get 21.
I\times 7
Divide I\times 21 by 3 to get I\times 7.