Solve for x
x=-2+\frac{4}{I}
I\neq 0
Solve for I
I=\frac{4}{x+2}
x\neq -2
Graph
Share
Copied to clipboard
I\left(x+2\right)=\left(x+2\right)\times 2-2x
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
Ix+2I=\left(x+2\right)\times 2-2x
Use the distributive property to multiply I by x+2.
Ix+2I=2x+4-2x
Use the distributive property to multiply x+2 by 2.
Ix+2I=4
Combine 2x and -2x to get 0.
Ix=4-2I
Subtract 2I from both sides.
\frac{Ix}{I}=\frac{4-2I}{I}
Divide both sides by I.
x=\frac{4-2I}{I}
Dividing by I undoes the multiplication by I.
x=-2+\frac{4}{I}
Divide 4-2I by I.
x=-2+\frac{4}{I}\text{, }x\neq -2
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}