Solve for I
I=\frac{7}{20}=0.35
Assign I
I≔\frac{7}{20}
Share
Copied to clipboard
I=-\frac{3}{5}\left(\frac{8}{12}+\frac{15}{12}\right)-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{5}{4} to fractions with denominator 12.
I=-\frac{3}{5}\times \frac{8+15}{12}-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Since \frac{8}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
I=-\frac{3}{5}\times \frac{23}{12}-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Add 8 and 15 to get 23.
I=\frac{-3\times 23}{5\times 12}-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Multiply -\frac{3}{5} times \frac{23}{12} by multiplying numerator times numerator and denominator times denominator.
I=\frac{-69}{60}-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Do the multiplications in the fraction \frac{-3\times 23}{5\times 12}.
I=-\frac{23}{20}-\frac{7}{2}\left(\frac{4}{14}-\frac{5}{7}\right)
Reduce the fraction \frac{-69}{60} to lowest terms by extracting and canceling out 3.
I=-\frac{23}{20}-\frac{7}{2}\left(\frac{2}{7}-\frac{5}{7}\right)
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
I=-\frac{23}{20}-\frac{7}{2}\times \frac{2-5}{7}
Since \frac{2}{7} and \frac{5}{7} have the same denominator, subtract them by subtracting their numerators.
I=-\frac{23}{20}-\frac{7}{2}\left(-\frac{3}{7}\right)
Subtract 5 from 2 to get -3.
I=-\frac{23}{20}-\frac{7\left(-3\right)}{2\times 7}
Multiply \frac{7}{2} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
I=-\frac{23}{20}-\frac{-3}{2}
Cancel out 7 in both numerator and denominator.
I=-\frac{23}{20}-\left(-\frac{3}{2}\right)
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
I=-\frac{23}{20}+\frac{3}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
I=-\frac{23}{20}+\frac{30}{20}
Least common multiple of 20 and 2 is 20. Convert -\frac{23}{20} and \frac{3}{2} to fractions with denominator 20.
I=\frac{-23+30}{20}
Since -\frac{23}{20} and \frac{30}{20} have the same denominator, add them by adding their numerators.
I=\frac{7}{20}
Add -23 and 30 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}