Solve for E
\left\{\begin{matrix}E=\frac{I\left(nr+R\right)}{n}\text{, }&n\neq 0\text{ and }R\neq -nr\\E\in \mathrm{R}\text{, }&I=0\text{ and }n=0\text{ and }R\neq 0\end{matrix}\right.
Solve for I
I=\frac{En}{nr+R}
R\neq -nr
Share
Copied to clipboard
I\left(nr+R\right)=nE
Multiply both sides of the equation by nr+R.
Inr+IR=nE
Use the distributive property to multiply I by nr+R.
nE=Inr+IR
Swap sides so that all variable terms are on the left hand side.
\frac{nE}{n}=\frac{I\left(nr+R\right)}{n}
Divide both sides by n.
E=\frac{I\left(nr+R\right)}{n}
Dividing by n undoes the multiplication by n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}