Solve for P
P=\sqrt{3}IV\cos(\theta )
V\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}
Solve for I (complex solution)
I=\frac{\sqrt{3}P}{3V\cos(\theta )}
V\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}
Solve for I
I=\frac{\sqrt{3}P}{3V\cos(\theta )}
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }V\neq 0
Graph
Share
Copied to clipboard
\frac{P}{\sqrt{3}V\cos(\theta )}=I
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{3}V\cos(\theta )}P=I
The equation is in standard form.
\frac{\frac{1}{\sqrt{3}V\cos(\theta )}P\sqrt{3}V\cos(\theta )}{1}=\frac{I\sqrt{3}V\cos(\theta )}{1}
Divide both sides by \left(\sqrt{3}\right)^{-1}V^{-1}\left(\cos(\theta )\right)^{-1}.
P=\frac{I\sqrt{3}V\cos(\theta )}{1}
Dividing by \left(\sqrt{3}\right)^{-1}V^{-1}\left(\cos(\theta )\right)^{-1} undoes the multiplication by \left(\sqrt{3}\right)^{-1}V^{-1}\left(\cos(\theta )\right)^{-1}.
P=\sqrt{3}IV\cos(\theta )
Divide I by \left(\sqrt{3}\right)^{-1}V^{-1}\left(\cos(\theta )\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}