Solve for d_p
d_{p}<a_{r}
H_{O}=\frac{4E}{\pi a_{r}^{2}}\text{ and }a_{r}\neq 0
Solve for a_r
\left\{\begin{matrix}a_{r}>d_{p}\text{, }&d_{p}\geq 0\text{ and }H_{O}=0\text{ and }E=0\\a_{r}\in \left(d_{p},0\right)\cup \left(0,\infty\right)\text{, }&d_{p}<0\text{ and }H_{O}=0\text{ and }E=0\\a_{r}=-2\sqrt{\frac{E}{\pi H_{O}}}\text{, }&H_{O}>0\text{ and }E>0\text{ and }H_{O}>\frac{4E}{\pi d_{p}^{2}}\text{ and }d_{p}<0\\a_{r}=2\sqrt{\frac{E}{\pi H_{O}}}\text{, }&H_{O}>0\text{ and }E>0\text{ and }\left(d_{p}\leq 0\text{ or }H_{O}<\frac{4E}{\pi d_{p}^{2}}\right)\\a_{r}=-2\sqrt{\frac{E}{\pi H_{O}}}\text{, }&H_{O}<0\text{ and }E<0\text{ and }H_{O}<\frac{4E}{\pi d_{p}^{2}}\text{ and }d_{p}<0\\a_{r}=2\sqrt{\frac{E}{\pi H_{O}}}\text{, }&H_{O}<0\text{ and }E<0\text{ and }\left(H_{O}>\frac{4E}{\pi d_{p}^{2}}\text{ or }d_{p}\leq 0\right)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}