Solve for f
f=\frac{gx\left(x+m\right)}{e^{x}}
g\neq 0\text{ and }x\neq 0
Solve for g
\left\{\begin{matrix}g=\frac{fe^{x}}{x\left(x+m\right)}\text{, }&f\neq 0\text{ and }x\neq -m\text{ and }x\neq 0\\g\neq 0\text{, }&m=-x\text{ and }f=0\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
fx=gxe^{-x}\left(x^{2}+mx\right)
Multiply both sides of the equation by gx.
fx=ge^{-x}x^{3}+ge^{-x}mx^{2}
Use the distributive property to multiply gxe^{-x} by x^{2}+mx.
xf=\frac{gx^{3}+gmx^{2}}{e^{x}}
The equation is in standard form.
\frac{xf}{x}=\frac{g\left(x+m\right)x^{2}}{e^{x}x}
Divide both sides by x.
f=\frac{g\left(x+m\right)x^{2}}{e^{x}x}
Dividing by x undoes the multiplication by x.
f=\frac{gx\left(x+m\right)}{e^{x}}
Divide \frac{g\left(x+m\right)x^{2}}{e^{x}} by x.
fx=gxe^{-x}\left(x^{2}+mx\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gx.
fx=ge^{-x}x^{3}+ge^{-x}mx^{2}
Use the distributive property to multiply gxe^{-x} by x^{2}+mx.
ge^{-x}x^{3}+ge^{-x}mx^{2}=fx
Swap sides so that all variable terms are on the left hand side.
\left(e^{-x}x^{3}+e^{-x}mx^{2}\right)g=fx
Combine all terms containing g.
\frac{x^{3}+mx^{2}}{e^{x}}g=fx
The equation is in standard form.
\frac{\frac{x^{3}+mx^{2}}{e^{x}}ge^{x}}{x^{3}+mx^{2}}=\frac{fxe^{x}}{x^{3}+mx^{2}}
Divide both sides by e^{-x}x^{3}+e^{-x}mx^{2}.
g=\frac{fxe^{x}}{x^{3}+mx^{2}}
Dividing by e^{-x}x^{3}+e^{-x}mx^{2} undoes the multiplication by e^{-x}x^{3}+e^{-x}mx^{2}.
g=\frac{fe^{x}}{x\left(x+m\right)}
Divide fx by e^{-x}x^{3}+e^{-x}mx^{2}.
g=\frac{fe^{x}}{x\left(x+m\right)}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}