Solve for k
\left\{\begin{matrix}\\k=H\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&H=0\end{matrix}\right.
Solve for H
H=k
H=0
Share
Copied to clipboard
4H^{2}-4kH=0
Combine H^{2} and 3H^{2} to get 4H^{2}.
-4kH=-4H^{2}
Subtract 4H^{2} from both sides. Anything subtracted from zero gives its negation.
kH=H^{2}
Cancel out -4 on both sides.
Hk=H^{2}
The equation is in standard form.
\frac{Hk}{H}=\frac{H^{2}}{H}
Divide both sides by H.
k=\frac{H^{2}}{H}
Dividing by H undoes the multiplication by H.
k=H
Divide H^{2} by H.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}