Solve for T
\left\{\begin{matrix}T=\frac{auz-H}{bz}\text{, }&z\neq 0\text{ and }b\neq 0\\T\in \mathrm{R}\text{, }&\left(H=auz\text{ and }b=0\right)\text{ or }\left(H=0\text{ and }z=0\right)\end{matrix}\right.
Solve for H
H=z\left(au-Tb\right)
Share
Copied to clipboard
uaz-bTz=H
Swap sides so that all variable terms are on the left hand side.
-bTz=H-uaz
Subtract uaz from both sides.
\left(-bz\right)T=H-auz
The equation is in standard form.
\frac{\left(-bz\right)T}{-bz}=\frac{H-auz}{-bz}
Divide both sides by -bz.
T=\frac{H-auz}{-bz}
Dividing by -bz undoes the multiplication by -bz.
T=-\frac{H-auz}{bz}
Divide H-uaz by -bz.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}