Solve for B
\left\{\begin{matrix}B=-K+\frac{H}{V^{2}}\text{, }&V\neq 0\\B\in \mathrm{R}\text{, }&H=0\text{ and }V=0\end{matrix}\right.
Solve for H
H=\left(B+K\right)V^{2}
Share
Copied to clipboard
KV^{2}+BV^{2}=H
Swap sides so that all variable terms are on the left hand side.
BV^{2}=H-KV^{2}
Subtract KV^{2} from both sides.
V^{2}B=H-KV^{2}
The equation is in standard form.
\frac{V^{2}B}{V^{2}}=\frac{H-KV^{2}}{V^{2}}
Divide both sides by V^{2}.
B=\frac{H-KV^{2}}{V^{2}}
Dividing by V^{2} undoes the multiplication by V^{2}.
B=-K+\frac{H}{V^{2}}
Divide -KV^{2}+H by V^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}