Solve for H
H=\sqrt[30517578125]{2}+\frac{1}{4}\approx 1.25
Assign H
H≔\sqrt[30517578125]{2}+\frac{1}{4}
Share
Copied to clipboard
H=32^{\frac{1}{152587890625}}+64^{-\frac{1}{3}}
Calculate 25 to the power of -8 and get \frac{1}{152587890625}.
H=32^{\frac{1}{152587890625}}+\frac{1}{4}
Calculate 64 to the power of -\frac{1}{3} and get \frac{1}{4}.
H=\sqrt[152587890625]{32}+\frac{1}{4}
Reorder the terms.
\sqrt[152587890625]{32}=\sqrt[152587890625]{2^{5}}=2^{\frac{5}{152587890625}}=2^{\frac{1}{30517578125}}=\sqrt[30517578125]{2}
Rewrite \sqrt[152587890625]{32} as \sqrt[152587890625]{2^{5}}. Convert from radical to exponential form and cancel out 5 in the exponent. Convert back to radical form.
H=\sqrt[30517578125]{2}+\frac{1}{4}
Insert the obtained value back in the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}