Solve for H
H = -\frac{21}{4} = -5\frac{1}{4} = -5.25
Assign H
H≔-\frac{21}{4}
Share
Copied to clipboard
H=-\frac{7}{10}\times \frac{-15}{-2}
Fraction \frac{7}{-10} can be rewritten as -\frac{7}{10} by extracting the negative sign.
H=-\frac{7}{10}\times \frac{15}{2}
Fraction \frac{-15}{-2} can be simplified to \frac{15}{2} by removing the negative sign from both the numerator and the denominator.
H=\frac{-7\times 15}{10\times 2}
Multiply -\frac{7}{10} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
H=\frac{-105}{20}
Do the multiplications in the fraction \frac{-7\times 15}{10\times 2}.
H=-\frac{21}{4}
Reduce the fraction \frac{-105}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}