Skip to main content
Solve for H
Tick mark Image
Assign H
Tick mark Image

Similar Problems from Web Search

Share

H=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
H=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
H=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
H=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{1}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Subtract 2 from 3 to get 1.
H=\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Anything divided by one gives itself.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Multiply \sqrt{3}+\sqrt{2} and \sqrt{3}+\sqrt{2} to get \left(\sqrt{3}+\sqrt{2}\right)^{2}.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
H=\left(\sqrt{3}+\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Multiply \sqrt{3}-\sqrt{2} and \sqrt{3}-\sqrt{2} to get \left(\sqrt{3}-\sqrt{2}\right)^{2}.
H=\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
H=3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
H=3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
H=3+2\sqrt{6}+2+\left(\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
H=5+2\sqrt{6}+\left(\sqrt{3}-\sqrt{2}\right)^{2}
Add 3 and 2 to get 5.
H=5+2\sqrt{6}+\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
H=5+2\sqrt{6}+3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
H=5+2\sqrt{6}+3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
H=5+2\sqrt{6}+3-2\sqrt{6}+2
The square of \sqrt{2} is 2.
H=5+2\sqrt{6}+5-2\sqrt{6}
Add 3 and 2 to get 5.
H=10+2\sqrt{6}-2\sqrt{6}
Add 5 and 5 to get 10.
H=10
Combine 2\sqrt{6} and -2\sqrt{6} to get 0.