Solve for G
G=\frac{49}{s\left(s^{2}+8s+49\right)}
s\neq 0
Solve for s
s=\frac{2^{\frac{2}{3}}\left(\sqrt[3]{21G\sqrt{3\left(6468G^{2}+5008G+1323\right)}+2504G|G|+1323|G|}+\sqrt[3]{-21G\sqrt{3\left(6468G^{2}+5008G+1323\right)}+2504G|G|+1323|G|}-8\sqrt[3]{2G|G|}\right)}{6\sqrt[3]{G|G|}}
Share
Copied to clipboard
G\times 1s\left(s^{2}+8s+49\right)=49
Multiply both sides of the equation by s^{2}+8s+49.
Gs^{3}+8Gs^{2}+49G\times 1s=49
Use the distributive property to multiply G\times 1s by s^{2}+8s+49.
Gs^{3}+8Gs^{2}+49Gs=49
Multiply 49 and 1 to get 49.
\left(s^{3}+8s^{2}+49s\right)G=49
Combine all terms containing G.
\frac{\left(s^{3}+8s^{2}+49s\right)G}{s^{3}+8s^{2}+49s}=\frac{49}{s^{3}+8s^{2}+49s}
Divide both sides by s^{3}+8s^{2}+49s.
G=\frac{49}{s^{3}+8s^{2}+49s}
Dividing by s^{3}+8s^{2}+49s undoes the multiplication by s^{3}+8s^{2}+49s.
G=\frac{49}{s\left(s^{2}+8s+49\right)}
Divide 49 by s^{3}+8s^{2}+49s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}