Solve for G
G=-3a-3b
Solve for a
a=-\frac{G}{3}-b
Share
Copied to clipboard
G=-\left(-\left(-a-b\right)\right)-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of a+b, find the opposite of each term.
G=-\left(a+b\right)-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of -a-b, find the opposite of each term.
G=-a-b-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of a+b, find the opposite of each term.
G=-a-b-\left(-\left(-b\right)+a\right)-\left(a+b\right)
To find the opposite of -b-a, find the opposite of each term.
G=-a-b-\left(-\left(-b\right)\right)-a-\left(a+b\right)
To find the opposite of -\left(-b\right)+a, find the opposite of each term.
G=-2a-b-\left(-\left(-b\right)\right)-\left(a+b\right)
Combine -a and -a to get -2a.
G=-2a-b-\left(-\left(-b\right)\right)-a-b
To find the opposite of a+b, find the opposite of each term.
G=-3a-b-\left(-\left(-b\right)\right)-b
Combine -2a and -a to get -3a.
G=-3a-2b-\left(-\left(-b\right)\right)
Combine -b and -b to get -2b.
G=-3a-2b-b
Multiply -1 and -1 to get 1.
G=-3a-3b
Combine -2b and -b to get -3b.
G=-\left(-\left(-a-b\right)\right)-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of a+b, find the opposite of each term.
G=-\left(a+b\right)-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of -a-b, find the opposite of each term.
G=-a-b-\left(-\left(-b-a\right)\right)-\left(a+b\right)
To find the opposite of a+b, find the opposite of each term.
G=-a-b-\left(-\left(-b\right)+a\right)-\left(a+b\right)
To find the opposite of -b-a, find the opposite of each term.
G=-a-b-\left(-\left(-b\right)\right)-a-\left(a+b\right)
To find the opposite of -\left(-b\right)+a, find the opposite of each term.
G=-2a-b-\left(-\left(-b\right)\right)-\left(a+b\right)
Combine -a and -a to get -2a.
G=-2a-b-\left(-\left(-b\right)\right)-a-b
To find the opposite of a+b, find the opposite of each term.
G=-3a-b-\left(-\left(-b\right)\right)-b
Combine -2a and -a to get -3a.
G=-3a-2b-\left(-\left(-b\right)\right)
Combine -b and -b to get -2b.
-3a-2b-\left(-\left(-b\right)\right)=G
Swap sides so that all variable terms are on the left hand side.
-3a-\left(-\left(-b\right)\right)=G+2b
Add 2b to both sides.
-3a=G+2b-\left(-b\right)
Add -\left(-b\right) to both sides.
-3a=G+2b+b
Multiply -1 and -1 to get 1.
-3a=G+3b
Combine 2b and b to get 3b.
\frac{-3a}{-3}=\frac{G+3b}{-3}
Divide both sides by -3.
a=\frac{G+3b}{-3}
Dividing by -3 undoes the multiplication by -3.
a=-\frac{G}{3}-b
Divide G+3b by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}