Skip to main content
Solve for G, F
Tick mark Image

Similar Problems from Web Search

Share

G=\frac{\left(1-3\sqrt{5}\right)\left(1-3\sqrt{5}\right)}{\left(1+3\sqrt{5}\right)\left(1-3\sqrt{5}\right)}
Consider the first equation. Rationalize the denominator of \frac{1-3\sqrt{5}}{1+3\sqrt{5}} by multiplying numerator and denominator by 1-3\sqrt{5}.
G=\frac{\left(1-3\sqrt{5}\right)\left(1-3\sqrt{5}\right)}{1^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(1+3\sqrt{5}\right)\left(1-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
G=\frac{\left(1-3\sqrt{5}\right)^{2}}{1^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 1-3\sqrt{5} and 1-3\sqrt{5} to get \left(1-3\sqrt{5}\right)^{2}.
G=\frac{1-6\sqrt{5}+9\left(\sqrt{5}\right)^{2}}{1^{2}-\left(3\sqrt{5}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3\sqrt{5}\right)^{2}.
G=\frac{1-6\sqrt{5}+9\times 5}{1^{2}-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{5} is 5.
G=\frac{1-6\sqrt{5}+45}{1^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 9 and 5 to get 45.
G=\frac{46-6\sqrt{5}}{1^{2}-\left(3\sqrt{5}\right)^{2}}
Add 1 and 45 to get 46.
G=\frac{46-6\sqrt{5}}{1-\left(3\sqrt{5}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
G=\frac{46-6\sqrt{5}}{1-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
G=\frac{46-6\sqrt{5}}{1-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
G=\frac{46-6\sqrt{5}}{1-9\times 5}
The square of \sqrt{5} is 5.
G=\frac{46-6\sqrt{5}}{1-45}
Multiply 9 and 5 to get 45.
G=\frac{46-6\sqrt{5}}{-44}
Subtract 45 from 1 to get -44.
G=-\frac{23}{22}+\frac{3}{22}\sqrt{5}
Divide each term of 46-6\sqrt{5} by -44 to get -\frac{23}{22}+\frac{3}{22}\sqrt{5}.
F=\sqrt{26}
Consider the second equation. Rewrite the division of square roots \frac{\sqrt{52}}{\sqrt{2}} as the square root of the division \sqrt{\frac{52}{2}} and perform the division.
G=-\frac{23}{22}+\frac{3}{22}\sqrt{5} F=\sqrt{26}
The system is now solved.