Solve for F (complex solution)
\left\{\begin{matrix}F=\frac{m\left(v_{1}-v_{0}\right)}{t}\text{, }&t\neq 0\\F\in \mathrm{C}\text{, }&\left(m=0\text{ or }v_{1}=v_{0}\right)\text{ and }t=0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{Ft}{v_{1}-v_{0}}\text{, }&v_{1}\neq v_{0}\\m\in \mathrm{C}\text{, }&\left(t=0\text{ or }F=0\right)\text{ and }v_{1}=v_{0}\end{matrix}\right.
Solve for F
\left\{\begin{matrix}F=\frac{m\left(v_{1}-v_{0}\right)}{t}\text{, }&t\neq 0\\F\in \mathrm{R}\text{, }&\left(m=0\text{ or }v_{1}=v_{0}\right)\text{ and }t=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{Ft}{v_{1}-v_{0}}\text{, }&v_{1}\neq v_{0}\\m\in \mathrm{R}\text{, }&\left(t=0\text{ or }F=0\right)\text{ and }v_{1}=v_{0}\end{matrix}\right.
Share
Copied to clipboard
tF=mv_{1}-mv_{0}
The equation is in standard form.
\frac{tF}{t}=\frac{m\left(v_{1}-v_{0}\right)}{t}
Divide both sides by t.
F=\frac{m\left(v_{1}-v_{0}\right)}{t}
Dividing by t undoes the multiplication by t.
mv_{1}-mv_{0}=Ft
Swap sides so that all variable terms are on the left hand side.
\left(v_{1}-v_{0}\right)m=Ft
Combine all terms containing m.
\frac{\left(v_{1}-v_{0}\right)m}{v_{1}-v_{0}}=\frac{Ft}{v_{1}-v_{0}}
Divide both sides by v_{1}-v_{0}.
m=\frac{Ft}{v_{1}-v_{0}}
Dividing by v_{1}-v_{0} undoes the multiplication by v_{1}-v_{0}.
tF=mv_{1}-mv_{0}
The equation is in standard form.
\frac{tF}{t}=\frac{m\left(v_{1}-v_{0}\right)}{t}
Divide both sides by t.
F=\frac{m\left(v_{1}-v_{0}\right)}{t}
Dividing by t undoes the multiplication by t.
mv_{1}-mv_{0}=Ft
Swap sides so that all variable terms are on the left hand side.
\left(v_{1}-v_{0}\right)m=Ft
Combine all terms containing m.
\frac{\left(v_{1}-v_{0}\right)m}{v_{1}-v_{0}}=\frac{Ft}{v_{1}-v_{0}}
Divide both sides by v_{1}-v_{0}.
m=\frac{Ft}{v_{1}-v_{0}}
Dividing by v_{1}-v_{0} undoes the multiplication by v_{1}-v_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}