Solve for F
\left\{\begin{matrix}F=-\frac{F_{x}Tm}{t-T}\text{, }&m\neq 0\text{ and }T\neq 0\text{ and }t\neq T\\F\in \mathrm{R}\text{, }&F_{x}=0\text{ and }T=t\text{ and }m\neq 0\text{ and }t\neq 0\end{matrix}\right.
Solve for F_x
F_{x}=-\frac{F\left(t-T\right)}{Tm}
m\neq 0\text{ and }T\neq 0
Share
Copied to clipboard
F_{x}Tm=TF\left(1-\frac{t}{T}\right)
Multiply both sides of the equation by Tm, the least common multiple of m,T.
F_{x}Tm=TF\left(\frac{T}{T}-\frac{t}{T}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{T}{T}.
F_{x}Tm=TF\times \frac{T-t}{T}
Since \frac{T}{T} and \frac{t}{T} have the same denominator, subtract them by subtracting their numerators.
F_{x}Tm=\frac{T\left(T-t\right)}{T}F
Express T\times \frac{T-t}{T} as a single fraction.
F_{x}Tm=\left(-t+T\right)F
Cancel out T in both numerator and denominator.
F_{x}Tm=-tF+TF
Use the distributive property to multiply -t+T by F.
-tF+TF=F_{x}Tm
Swap sides so that all variable terms are on the left hand side.
\left(-t+T\right)F=F_{x}Tm
Combine all terms containing F.
\left(T-t\right)F=F_{x}Tm
The equation is in standard form.
\frac{\left(T-t\right)F}{T-t}=\frac{F_{x}Tm}{T-t}
Divide both sides by T-t.
F=\frac{F_{x}Tm}{T-t}
Dividing by T-t undoes the multiplication by T-t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}