Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-4x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{-\left(-4\right)±\sqrt{80}}{2\left(-1\right)}
Add 16 to 64.
x=\frac{-\left(-4\right)±4\sqrt{5}}{2\left(-1\right)}
Take the square root of 80.
x=\frac{4±4\sqrt{5}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{5}+4}{-2}
Now solve the equation x=\frac{4±4\sqrt{5}}{-2} when ± is plus. Add 4 to 4\sqrt{5}.
x=-2\sqrt{5}-2
Divide 4+4\sqrt{5} by -2.
x=\frac{4-4\sqrt{5}}{-2}
Now solve the equation x=\frac{4±4\sqrt{5}}{-2} when ± is minus. Subtract 4\sqrt{5} from 4.
x=2\sqrt{5}-2
Divide 4-4\sqrt{5} by -2.
-x^{2}-4x+16=-\left(x-\left(-2\sqrt{5}-2\right)\right)\left(x-\left(2\sqrt{5}-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2-2\sqrt{5} for x_{1} and -2+2\sqrt{5} for x_{2}.