F ( x ) = \int _ { 0 } ^ { x ^ { 3 } - 3 x ^ { 2 } } f ( t ) d t \quad \text { e } f ( t ) = \int _ { 0 } ^ { 1 + \frac { \pi } { 2 } } \sin ^ { 3 } ( u ) \cdot \cos ( u ) d u
Evaluate (complex solution)
Fx=\frac{etx^{4}\left(f\left(x-3\right)\right)^{2}}{2}\text{ and }\frac{etx^{4}\left(f\left(x-3\right)\right)^{2}}{2}=\frac{\left(\cos(2)+1\right)^{2}}{16}
Solve for t
t=\frac{\left(\frac{\cos(2)+1}{f\left(x-3\right)}\right)^{2}}{8ex^{4}}
x\neq 3\text{ and }f\neq 0\text{ and }F=\frac{\left(\cos(2)+1\right)^{2}}{16x}\text{ and }x\neq 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}