Evaluate
\frac{9s^{2}-95s+144}{s\left(s-8\right)\left(s-3\right)}
Differentiate w.r.t. s
\frac{-9s^{4}+190s^{3}-1261s^{2}+3168s-3456}{\left(s\left(s-8\right)\left(s-3\right)\right)^{2}}
Share
Copied to clipboard
\frac{6\left(s-8\right)}{s\left(s-8\right)}-\frac{s}{s\left(s-8\right)}+\frac{4}{s-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s and s-8 is s\left(s-8\right). Multiply \frac{6}{s} times \frac{s-8}{s-8}. Multiply \frac{1}{s-8} times \frac{s}{s}.
\frac{6\left(s-8\right)-s}{s\left(s-8\right)}+\frac{4}{s-3}
Since \frac{6\left(s-8\right)}{s\left(s-8\right)} and \frac{s}{s\left(s-8\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6s-48-s}{s\left(s-8\right)}+\frac{4}{s-3}
Do the multiplications in 6\left(s-8\right)-s.
\frac{5s-48}{s\left(s-8\right)}+\frac{4}{s-3}
Combine like terms in 6s-48-s.
\frac{\left(5s-48\right)\left(s-3\right)}{s\left(s-8\right)\left(s-3\right)}+\frac{4s\left(s-8\right)}{s\left(s-8\right)\left(s-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s\left(s-8\right) and s-3 is s\left(s-8\right)\left(s-3\right). Multiply \frac{5s-48}{s\left(s-8\right)} times \frac{s-3}{s-3}. Multiply \frac{4}{s-3} times \frac{s\left(s-8\right)}{s\left(s-8\right)}.
\frac{\left(5s-48\right)\left(s-3\right)+4s\left(s-8\right)}{s\left(s-8\right)\left(s-3\right)}
Since \frac{\left(5s-48\right)\left(s-3\right)}{s\left(s-8\right)\left(s-3\right)} and \frac{4s\left(s-8\right)}{s\left(s-8\right)\left(s-3\right)} have the same denominator, add them by adding their numerators.
\frac{5s^{2}-15s-48s+144+4s^{2}-32s}{s\left(s-8\right)\left(s-3\right)}
Do the multiplications in \left(5s-48\right)\left(s-3\right)+4s\left(s-8\right).
\frac{9s^{2}-95s+144}{s\left(s-8\right)\left(s-3\right)}
Combine like terms in 5s^{2}-15s-48s+144+4s^{2}-32s.
\frac{9s^{2}-95s+144}{s^{3}-11s^{2}+24s}
Expand s\left(s-8\right)\left(s-3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}