Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\times 5+1}{\left(\sqrt{5}\right)^{2}+\sqrt{5}-2}
The square of \sqrt{5} is 5.
\frac{10+1}{\left(\sqrt{5}\right)^{2}+\sqrt{5}-2}
Multiply 2 and 5 to get 10.
\frac{11}{\left(\sqrt{5}\right)^{2}+\sqrt{5}-2}
Add 10 and 1 to get 11.
\frac{11}{5+\sqrt{5}-2}
The square of \sqrt{5} is 5.
\frac{11}{3+\sqrt{5}}
Subtract 2 from 5 to get 3.
\frac{11\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}
Rationalize the denominator of \frac{11}{3+\sqrt{5}} by multiplying numerator and denominator by 3-\sqrt{5}.
\frac{11\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{11\left(3-\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{11\left(3-\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{33-11\sqrt{5}}{4}
Use the distributive property to multiply 11 by 3-\sqrt{5}.