Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{Ft}{\left(t+1\right)^{N}-1}\text{, }&\left(\left(Re(N)\right)^{2}+\left(Im(N)\right)^{2}=0\text{ or }\nexists n_{1}\in \mathrm{Z}\text{ : }t=e^{-\frac{2\pi n_{1}iRe(N)}{\left(Re(N)\right)^{2}+\left(Im(N)\right)^{2}}-\frac{2\pi n_{1}Im(N)}{\left(Re(N)\right)^{2}+\left(Im(N)\right)^{2}}}-1\right)\text{ and }t\neq 0\\A\in \mathrm{C}\text{, }&F=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }N=\frac{2\pi n_{2}i}{\ln(t+1)}\text{ and }t\neq 0\text{ and }t\neq -1\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{Ft}{\left(t+1\right)^{N}-1}\text{, }&\left(t=-1\text{ and }N>0\right)\text{ or }\left(N\neq 0\text{ and }t\neq -2\text{ and }Denominator(N)\text{bmod}2=1\text{ and }t<-1\right)\text{ or }\left(t<-1\text{ and }Numerator(N)\text{bmod}2=1\text{ and }Denominator(N)\text{bmod}2=1\right)\text{ or }\left(N\neq 0\text{ and }t\neq 0\text{ and }t>-1\right)\\A\in \mathrm{R}\text{, }&t\neq 0\text{ and }t\neq -1\text{ and }\left(N=0\text{ or }t<-1\right)\text{ and }\left(t=-2\text{ or }N=0\right)\text{ and }Numerator(N)\text{bmod}2=0\text{ and }Denominator(N)\text{bmod}2=1\text{ and }F=0\end{matrix}\right.
Solve for F (complex solution)
F=-\frac{A\left(-\left(t+1\right)^{N}+1\right)}{t}
t\neq 0
Solve for F
F=-\frac{A\left(-\left(t+1\right)^{N}+1\right)}{t}
\left(t>-1\text{ and }t\neq 0\right)\text{ or }\left(N>0\text{ and }t=-1\right)\text{ or }\left(Denominator(N)\text{bmod}2=1\text{ and }t<-1\right)
Share
Copied to clipboard
Ft=A\left(\left(1+t\right)^{N}-1\right)
Multiply both sides of the equation by t.
Ft=A\left(1+t\right)^{N}-A
Use the distributive property to multiply A by \left(1+t\right)^{N}-1.
A\left(1+t\right)^{N}-A=Ft
Swap sides so that all variable terms are on the left hand side.
\left(\left(1+t\right)^{N}-1\right)A=Ft
Combine all terms containing A.
\left(\left(t+1\right)^{N}-1\right)A=Ft
The equation is in standard form.
\frac{\left(\left(t+1\right)^{N}-1\right)A}{\left(t+1\right)^{N}-1}=\frac{Ft}{\left(t+1\right)^{N}-1}
Divide both sides by \left(1+t\right)^{N}-1.
A=\frac{Ft}{\left(t+1\right)^{N}-1}
Dividing by \left(1+t\right)^{N}-1 undoes the multiplication by \left(1+t\right)^{N}-1.
Ft=A\left(\left(1+t\right)^{N}-1\right)
Multiply both sides of the equation by t.
Ft=A\left(1+t\right)^{N}-A
Use the distributive property to multiply A by \left(1+t\right)^{N}-1.
A\left(1+t\right)^{N}-A=Ft
Swap sides so that all variable terms are on the left hand side.
\left(\left(1+t\right)^{N}-1\right)A=Ft
Combine all terms containing A.
\left(\left(t+1\right)^{N}-1\right)A=Ft
The equation is in standard form.
\frac{\left(\left(t+1\right)^{N}-1\right)A}{\left(t+1\right)^{N}-1}=\frac{Ft}{\left(t+1\right)^{N}-1}
Divide both sides by \left(1+t\right)^{N}-1.
A=\frac{Ft}{\left(t+1\right)^{N}-1}
Dividing by \left(1+t\right)^{N}-1 undoes the multiplication by \left(1+t\right)^{N}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}