Skip to main content
Solve for F
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

F=a^{2}+8a+16-\left(a-4\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+4\right)^{2}.
F=a^{2}+8a+16-\left(a^{2}-8a+16\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-4\right)^{2}.
F=a^{2}+8a+16-a^{2}+8a-16
To find the opposite of a^{2}-8a+16, find the opposite of each term.
F=8a+16+8a-16
Combine a^{2} and -a^{2} to get 0.
F=16a+16-16
Combine 8a and 8a to get 16a.
F=16a
Subtract 16 from 16 to get 0.
F=a^{2}+8a+16-\left(a-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+4\right)^{2}.
F=a^{2}+8a+16-\left(a^{2}-8a+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-4\right)^{2}.
F=a^{2}+8a+16-a^{2}+8a-16
To find the opposite of a^{2}-8a+16, find the opposite of each term.
F=8a+16+8a-16
Combine a^{2} and -a^{2} to get 0.
F=16a+16-16
Combine 8a and 8a to get 16a.
F=16a
Subtract 16 from 16 to get 0.
16a=F
Swap sides so that all variable terms are on the left hand side.
\frac{16a}{16}=\frac{F}{16}
Divide both sides by 16.
a=\frac{F}{16}
Dividing by 16 undoes the multiplication by 16.