Solve for F
F=7t^{2}-12t-5
Solve for t
t=\frac{-\sqrt{7F+71}+6}{7}
t=\frac{\sqrt{7F+71}+6}{7}\text{, }F\geq -\frac{71}{7}
Share
Copied to clipboard
F=\left(4t\right)^{2}-1-\left(3t+2\right)^{2}
Consider \left(4t-1\right)\left(4t+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
F=4^{2}t^{2}-1-\left(3t+2\right)^{2}
Expand \left(4t\right)^{2}.
F=16t^{2}-1-\left(3t+2\right)^{2}
Calculate 4 to the power of 2 and get 16.
F=16t^{2}-1-\left(9t^{2}+12t+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3t+2\right)^{2}.
F=16t^{2}-1-9t^{2}-12t-4
To find the opposite of 9t^{2}+12t+4, find the opposite of each term.
F=7t^{2}-1-12t-4
Combine 16t^{2} and -9t^{2} to get 7t^{2}.
F=7t^{2}-5-12t
Subtract 4 from -1 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}