Solve for K (complex solution)
\left\{\begin{matrix}K=\frac{Fd^{2}}{O_{2}Q_{1}}\text{, }&O_{2}\neq 0\text{ and }Q_{1}\neq 0\text{ and }d\neq 0\\K\in \mathrm{C}\text{, }&\left(O_{2}=0\text{ or }Q_{1}=0\right)\text{ and }F=0\text{ and }d\neq 0\end{matrix}\right.
Solve for K
\left\{\begin{matrix}K=\frac{Fd^{2}}{O_{2}Q_{1}}\text{, }&O_{2}\neq 0\text{ and }Q_{1}\neq 0\text{ and }d\neq 0\\K\in \mathrm{R}\text{, }&\left(O_{2}=0\text{ or }Q_{1}=0\right)\text{ and }F=0\text{ and }d\neq 0\end{matrix}\right.
Solve for F
F=\frac{KO_{2}Q_{1}}{d^{2}}
d\neq 0
Share
Copied to clipboard
Fd^{2}=KQ_{1}O_{2}
Multiply both sides of the equation by d^{2}.
KQ_{1}O_{2}=Fd^{2}
Swap sides so that all variable terms are on the left hand side.
O_{2}Q_{1}K=Fd^{2}
The equation is in standard form.
\frac{O_{2}Q_{1}K}{O_{2}Q_{1}}=\frac{Fd^{2}}{O_{2}Q_{1}}
Divide both sides by Q_{1}O_{2}.
K=\frac{Fd^{2}}{O_{2}Q_{1}}
Dividing by Q_{1}O_{2} undoes the multiplication by Q_{1}O_{2}.
Fd^{2}=KQ_{1}O_{2}
Multiply both sides of the equation by d^{2}.
KQ_{1}O_{2}=Fd^{2}
Swap sides so that all variable terms are on the left hand side.
O_{2}Q_{1}K=Fd^{2}
The equation is in standard form.
\frac{O_{2}Q_{1}K}{O_{2}Q_{1}}=\frac{Fd^{2}}{O_{2}Q_{1}}
Divide both sides by Q_{1}O_{2}.
K=\frac{Fd^{2}}{O_{2}Q_{1}}
Dividing by Q_{1}O_{2} undoes the multiplication by Q_{1}O_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}