Solve for F
F = \frac{41}{12} = 3\frac{5}{12} \approx 3.416666667
Assign F
F≔\frac{41}{12}
Share
Copied to clipboard
F=\frac{11}{6}-\left(-\frac{3}{4}-\frac{5}{6}\right)
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
F=\frac{11}{6}-\left(-\frac{9}{12}-\frac{10}{12}\right)
Least common multiple of 4 and 6 is 12. Convert -\frac{3}{4} and \frac{5}{6} to fractions with denominator 12.
F=\frac{11}{6}-\frac{-9-10}{12}
Since -\frac{9}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
F=\frac{11}{6}-\left(-\frac{19}{12}\right)
Subtract 10 from -9 to get -19.
F=\frac{11}{6}+\frac{19}{12}
The opposite of -\frac{19}{12} is \frac{19}{12}.
F=\frac{22}{12}+\frac{19}{12}
Least common multiple of 6 and 12 is 12. Convert \frac{11}{6} and \frac{19}{12} to fractions with denominator 12.
F=\frac{22+19}{12}
Since \frac{22}{12} and \frac{19}{12} have the same denominator, add them by adding their numerators.
F=\frac{41}{12}
Add 22 and 19 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}