F : ( 0,4 ) : D : 4 = - 4
Solve for D
D=-\frac{5F}{32}
F\neq 0
Solve for F
F=-\frac{32D}{5}
D\neq 0
Share
Copied to clipboard
\frac{\frac{F}{0,4}}{D}=-4\times 4
Multiply both sides by 4.
\frac{F}{0,4}=-4\times 4D
Variable D cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by D.
\frac{F}{0,4}=-16D
Multiply -4 and 4 to get -16.
-16D=\frac{F}{0,4}
Swap sides so that all variable terms are on the left hand side.
-16D=\frac{5F}{2}
The equation is in standard form.
\frac{-16D}{-16}=\frac{5F}{-16\times 2}
Divide both sides by -16.
D=\frac{5F}{-16\times 2}
Dividing by -16 undoes the multiplication by -16.
D=-\frac{5F}{32}
Divide \frac{5F}{2} by -16.
D=-\frac{5F}{32}\text{, }D\neq 0
Variable D cannot be equal to 0.
\frac{\frac{F}{0,4}}{D}=-4\times 4
Multiply both sides by 4.
\frac{F}{0,4}=-4\times 4D
Multiply both sides of the equation by D.
\frac{F}{0,4}=-16D
Multiply -4 and 4 to get -16.
\frac{5}{2}F=-16D
The equation is in standard form.
\frac{\frac{5}{2}F}{\frac{5}{2}}=-\frac{16D}{\frac{5}{2}}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
F=-\frac{16D}{\frac{5}{2}}
Dividing by \frac{5}{2} undoes the multiplication by \frac{5}{2}.
F=-\frac{32D}{5}
Divide -16D by \frac{5}{2} by multiplying -16D by the reciprocal of \frac{5}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}