Solve for E (complex solution)
\left\{\begin{matrix}E=\frac{-F+H-20k-2}{10k}\text{, }&k\neq 0\\E\in \mathrm{C}\text{, }&F=H-2\text{ and }k=0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=\frac{-F+H-20k-2}{10k}\text{, }&k\neq 0\\E\in \mathrm{R}\text{, }&F=H-2\text{ and }k=0\end{matrix}\right.
Solve for F
F=-10Ek+H-20k-2
Share
Copied to clipboard
H-10k\left(E+2\right)=F+2
Swap sides so that all variable terms are on the left hand side.
H-10kE-20k=F+2
Use the distributive property to multiply -10k by E+2.
-10kE-20k=F+2-H
Subtract H from both sides.
-10kE=F+2-H+20k
Add 20k to both sides.
\left(-10k\right)E=F-H+20k+2
The equation is in standard form.
\frac{\left(-10k\right)E}{-10k}=\frac{F-H+20k+2}{-10k}
Divide both sides by -10k.
E=\frac{F-H+20k+2}{-10k}
Dividing by -10k undoes the multiplication by -10k.
E=-\frac{F-H+20k+2}{10k}
Divide F-H+2+20k by -10k.
H-10k\left(E+2\right)=F+2
Swap sides so that all variable terms are on the left hand side.
H-10kE-20k=F+2
Use the distributive property to multiply -10k by E+2.
-10kE-20k=F+2-H
Subtract H from both sides.
-10kE=F+2-H+20k
Add 20k to both sides.
\left(-10k\right)E=F-H+20k+2
The equation is in standard form.
\frac{\left(-10k\right)E}{-10k}=\frac{F-H+20k+2}{-10k}
Divide both sides by -10k.
E=\frac{F-H+20k+2}{-10k}
Dividing by -10k undoes the multiplication by -10k.
E=-\frac{F-H+20k+2}{10k}
Divide F-H+2+20k by -10k.
F=H-10k\left(E+2\right)-2
Subtract 2 from both sides.
F=H-10kE-20k-2
Use the distributive property to multiply -10k by E+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}