E d P = \frac { 750 - 1000 } { 1000 } \times \frac { 100 } { 125 - 100 }
Solve for E
E=-\frac{1}{Pd}
P\neq 0\text{ and }d\neq 0
Solve for P
P=-\frac{1}{Ed}
d\neq 0\text{ and }E\neq 0
Share
Copied to clipboard
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
Subtract 1000 from 750 to get -250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
Reduce the fraction \frac{-250}{1000} to lowest terms by extracting and canceling out 250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
Subtract 100 from 125 to get 25.
EdP=\left(-\frac{1}{4}\right)\times 4
Divide 100 by 25 to get 4.
PdE=-1
The equation is in standard form.
\frac{PdE}{Pd}=-\frac{1}{Pd}
Divide both sides by dP.
E=-\frac{1}{Pd}
Dividing by dP undoes the multiplication by dP.
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
Subtract 1000 from 750 to get -250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
Reduce the fraction \frac{-250}{1000} to lowest terms by extracting and canceling out 250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
Subtract 100 from 125 to get 25.
EdP=\left(-\frac{1}{4}\right)\times 4
Divide 100 by 25 to get 4.
EdP=-1
The equation is in standard form.
\frac{EdP}{Ed}=-\frac{1}{Ed}
Divide both sides by Ed.
P=-\frac{1}{Ed}
Dividing by Ed undoes the multiplication by Ed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}