Solve for E
\left\{\begin{matrix}E=-\frac{-\sqrt{2}b+2b+\sqrt{2}-5}{a}\text{, }&a\neq 0\\E\in \mathrm{R}\text{, }&b=\frac{3\sqrt{2}}{2}+4\text{ and }a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{-\sqrt{2}b+2b+\sqrt{2}-5}{E}\text{, }&E\neq 0\\a\in \mathrm{R}\text{, }&b=\frac{3\sqrt{2}}{2}+4\text{ and }E=0\end{matrix}\right.
Share
Copied to clipboard
Ea+\sqrt{2}=5+\sqrt{2}b-2b
Subtract 2b from both sides.
Ea=5+\sqrt{2}b-2b-\sqrt{2}
Subtract \sqrt{2} from both sides.
aE=\sqrt{2}b-2b+5-\sqrt{2}
The equation is in standard form.
\frac{aE}{a}=\frac{\sqrt{2}b-2b+5-\sqrt{2}}{a}
Divide both sides by a.
E=\frac{\sqrt{2}b-2b+5-\sqrt{2}}{a}
Dividing by a undoes the multiplication by a.
Ea+\sqrt{2}=5+\sqrt{2}b-2b
Subtract 2b from both sides.
Ea=5+\sqrt{2}b-2b-\sqrt{2}
Subtract \sqrt{2} from both sides.
Ea=\sqrt{2}b-2b+5-\sqrt{2}
The equation is in standard form.
\frac{Ea}{E}=\frac{\sqrt{2}b-2b+5-\sqrt{2}}{E}
Divide both sides by E.
a=\frac{\sqrt{2}b-2b+5-\sqrt{2}}{E}
Dividing by E undoes the multiplication by E.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}