Solve for P
P=-\left(E^{2}+T\right)
E\neq 0
Solve for E
E=\sqrt{-P-T}
E=-\sqrt{-P-T}\text{, }P<-T
Share
Copied to clipboard
EE-2EE=\left(P+T\right)\times 1
Multiply both sides of the equation by E.
E^{2}-2EE=\left(P+T\right)\times 1
Multiply E and E to get E^{2}.
E^{2}-2E^{2}=\left(P+T\right)\times 1
Multiply E and E to get E^{2}.
-E^{2}=\left(P+T\right)\times 1
Combine E^{2} and -2E^{2} to get -E^{2}.
-E^{2}=P+T
Use the distributive property to multiply P+T by 1.
P+T=-E^{2}
Swap sides so that all variable terms are on the left hand side.
P=-E^{2}-T
Subtract T from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}