Skip to main content
Solve for E
Tick mark Image
Graph

Similar Problems from Web Search

Share

E\left(x^{2}-2xm+m^{2}\right)\left(x+m\right)-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-m\right)^{2}.
\left(Ex^{2}-2Exm+Em^{2}\right)\left(x+m\right)-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use the distributive property to multiply E by x^{2}-2xm+m^{2}.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use the distributive property to multiply Ex^{2}-2Exm+Em^{2} by x+m and combine like terms.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-\left(4x^{2}-4xm+m^{2}\right)=m^{2}\left(m-1\right)+x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-m\right)^{2}.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-4x^{2}+4xm-m^{2}=m^{2}\left(m-1\right)+x^{3}
To find the opposite of 4x^{2}-4xm+m^{2}, find the opposite of each term.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-4x^{2}+4xm-m^{2}=m^{3}-m^{2}+x^{3}
Use the distributive property to multiply m^{2} by m-1.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}+4xm-m^{2}=m^{3}-m^{2}+x^{3}+4x^{2}
Add 4x^{2} to both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-m^{2}=m^{3}-m^{2}+x^{3}+4x^{2}-4xm
Subtract 4xm from both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}=m^{3}-m^{2}+x^{3}+4x^{2}-4xm+m^{2}
Add m^{2} to both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}=m^{3}+x^{3}+4x^{2}-4xm
Combine -m^{2} and m^{2} to get 0.
\left(x^{3}-x^{2}m-xm^{2}+m^{3}\right)E=m^{3}+x^{3}+4x^{2}-4xm
Combine all terms containing E.
\left(x^{3}-mx^{2}-xm^{2}+m^{3}\right)E=x^{3}+4x^{2}-4mx+m^{3}
The equation is in standard form.
\frac{\left(x^{3}-mx^{2}-xm^{2}+m^{3}\right)E}{x^{3}-mx^{2}-xm^{2}+m^{3}}=\frac{x^{3}+4x^{2}-4mx+m^{3}}{x^{3}-mx^{2}-xm^{2}+m^{3}}
Divide both sides by x^{3}-mx^{2}-xm^{2}+m^{3}.
E=\frac{x^{3}+4x^{2}-4mx+m^{3}}{x^{3}-mx^{2}-xm^{2}+m^{3}}
Dividing by x^{3}-mx^{2}-xm^{2}+m^{3} undoes the multiplication by x^{3}-mx^{2}-xm^{2}+m^{3}.
E=\frac{x^{3}+4x^{2}-4mx+m^{3}}{\left(x-m\right)\left(x^{2}-m^{2}\right)}
Divide 4x^{2}-4xm+m^{3}+x^{3} by x^{3}-mx^{2}-xm^{2}+m^{3}.