Solve for E
\left\{\begin{matrix}E=-\frac{-x^{3}-4x^{2}+4mx-m^{3}}{\left(x+m\right)\left(x-m\right)^{2}}\text{, }&|x|\neq |m|\\E\in \mathrm{R}\text{, }&x=0\text{ and }m=0\end{matrix}\right.
Graph
Share
Copied to clipboard
E\left(x^{2}-2xm+m^{2}\right)\left(x+m\right)-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-m\right)^{2}.
\left(Ex^{2}-2Exm+Em^{2}\right)\left(x+m\right)-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use the distributive property to multiply E by x^{2}-2xm+m^{2}.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-\left(2x-m\right)^{2}=m^{2}\left(m-1\right)+x^{3}
Use the distributive property to multiply Ex^{2}-2Exm+Em^{2} by x+m and combine like terms.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-\left(4x^{2}-4xm+m^{2}\right)=m^{2}\left(m-1\right)+x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-m\right)^{2}.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-4x^{2}+4xm-m^{2}=m^{2}\left(m-1\right)+x^{3}
To find the opposite of 4x^{2}-4xm+m^{2}, find the opposite of each term.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-4x^{2}+4xm-m^{2}=m^{3}-m^{2}+x^{3}
Use the distributive property to multiply m^{2} by m-1.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}+4xm-m^{2}=m^{3}-m^{2}+x^{3}+4x^{2}
Add 4x^{2} to both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}-m^{2}=m^{3}-m^{2}+x^{3}+4x^{2}-4xm
Subtract 4xm from both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}=m^{3}-m^{2}+x^{3}+4x^{2}-4xm+m^{2}
Add m^{2} to both sides.
Ex^{3}-Ex^{2}m-Exm^{2}+Em^{3}=m^{3}+x^{3}+4x^{2}-4xm
Combine -m^{2} and m^{2} to get 0.
\left(x^{3}-x^{2}m-xm^{2}+m^{3}\right)E=m^{3}+x^{3}+4x^{2}-4xm
Combine all terms containing E.
\left(x^{3}-mx^{2}-xm^{2}+m^{3}\right)E=x^{3}+4x^{2}-4mx+m^{3}
The equation is in standard form.
\frac{\left(x^{3}-mx^{2}-xm^{2}+m^{3}\right)E}{x^{3}-mx^{2}-xm^{2}+m^{3}}=\frac{x^{3}+4x^{2}-4mx+m^{3}}{x^{3}-mx^{2}-xm^{2}+m^{3}}
Divide both sides by x^{3}-mx^{2}-xm^{2}+m^{3}.
E=\frac{x^{3}+4x^{2}-4mx+m^{3}}{x^{3}-mx^{2}-xm^{2}+m^{3}}
Dividing by x^{3}-mx^{2}-xm^{2}+m^{3} undoes the multiplication by x^{3}-mx^{2}-xm^{2}+m^{3}.
E=\frac{x^{3}+4x^{2}-4mx+m^{3}}{\left(x-m\right)\left(x^{2}-m^{2}\right)}
Divide 4x^{2}-4xm+m^{3}+x^{3} by x^{3}-mx^{2}-xm^{2}+m^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}