Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+2}{x-5}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
Factor the expressions that are not already factored in \frac{x^{2}-4}{x^{2}+7x+10}.
\frac{\frac{x+2}{x-5}-\frac{x-2}{x+5}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
Cancel out x+2 in both numerator and denominator.
\frac{\frac{\left(x+2\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-2\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x+5 is \left(x-5\right)\left(x+5\right). Multiply \frac{x+2}{x-5} times \frac{x+5}{x+5}. Multiply \frac{x-2}{x+5} times \frac{x-5}{x-5}.
\frac{\frac{\left(x+2\right)\left(x+5\right)-\left(x-2\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
Since \frac{\left(x+2\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)} and \frac{\left(x-2\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+5x+2x+10-x^{2}+5x+2x-10}{\left(x-5\right)\left(x+5\right)}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
Do the multiplications in \left(x+2\right)\left(x+5\right)-\left(x-2\right)\left(x-5\right).
\frac{\frac{14x}{\left(x-5\right)\left(x+5\right)}-\frac{27-5x}{25-x^{2}}}{\frac{x+3}{x^{2}-25}}
Combine like terms in x^{2}+5x+2x+10-x^{2}+5x+2x-10.
\frac{\frac{14x}{\left(x-5\right)\left(x+5\right)}-\frac{27-5x}{\left(x-5\right)\left(-x-5\right)}}{\frac{x+3}{x^{2}-25}}
Factor 25-x^{2}.
\frac{\frac{14x}{\left(x-5\right)\left(x+5\right)}-\frac{-\left(27-5x\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{x+3}{x^{2}-25}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x+5\right) and \left(x-5\right)\left(-x-5\right) is \left(x-5\right)\left(x+5\right). Multiply \frac{27-5x}{\left(x-5\right)\left(-x-5\right)} times \frac{-1}{-1}.
\frac{\frac{14x-\left(-\left(27-5x\right)\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{x+3}{x^{2}-25}}
Since \frac{14x}{\left(x-5\right)\left(x+5\right)} and \frac{-\left(27-5x\right)}{\left(x-5\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14x+27-5x}{\left(x-5\right)\left(x+5\right)}}{\frac{x+3}{x^{2}-25}}
Do the multiplications in 14x-\left(-\left(27-5x\right)\right).
\frac{\frac{9x+27}{\left(x-5\right)\left(x+5\right)}}{\frac{x+3}{x^{2}-25}}
Combine like terms in 14x+27-5x.
\frac{\left(9x+27\right)\left(x^{2}-25\right)}{\left(x-5\right)\left(x+5\right)\left(x+3\right)}
Divide \frac{9x+27}{\left(x-5\right)\left(x+5\right)} by \frac{x+3}{x^{2}-25} by multiplying \frac{9x+27}{\left(x-5\right)\left(x+5\right)} by the reciprocal of \frac{x+3}{x^{2}-25}.
\frac{9\left(x-5\right)\left(x+3\right)\left(x+5\right)}{\left(x-5\right)\left(x+3\right)\left(x+5\right)}
Factor the expressions that are not already factored.
9
Cancel out \left(x-5\right)\left(x+3\right)\left(x+5\right) in both numerator and denominator.