E ( R ) = 1.5 \% + 0.8 ( 6.4 \% - 1.5 \% ) = X
Solve for X
X=0.0542
Share
Copied to clipboard
\frac{15}{1000}+0.8\left(\frac{6.4}{100}-\frac{1.5}{100}\right)=X
Expand \frac{1.5}{100} by multiplying both numerator and the denominator by 10.
\frac{3}{200}+0.8\left(\frac{6.4}{100}-\frac{1.5}{100}\right)=X
Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\frac{3}{200}+0.8\left(\frac{64}{1000}-\frac{1.5}{100}\right)=X
Expand \frac{6.4}{100} by multiplying both numerator and the denominator by 10.
\frac{3}{200}+0.8\left(\frac{8}{125}-\frac{1.5}{100}\right)=X
Reduce the fraction \frac{64}{1000} to lowest terms by extracting and canceling out 8.
\frac{3}{200}+0.8\left(\frac{8}{125}-\frac{15}{1000}\right)=X
Expand \frac{1.5}{100} by multiplying both numerator and the denominator by 10.
\frac{3}{200}+0.8\left(\frac{8}{125}-\frac{3}{200}\right)=X
Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\frac{3}{200}+0.8\left(\frac{64}{1000}-\frac{15}{1000}\right)=X
Least common multiple of 125 and 200 is 1000. Convert \frac{8}{125} and \frac{3}{200} to fractions with denominator 1000.
\frac{3}{200}+0.8\times \frac{64-15}{1000}=X
Since \frac{64}{1000} and \frac{15}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{200}+0.8\times \frac{49}{1000}=X
Subtract 15 from 64 to get 49.
\frac{3}{200}+\frac{4}{5}\times \frac{49}{1000}=X
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{3}{200}+\frac{4\times 49}{5\times 1000}=X
Multiply \frac{4}{5} times \frac{49}{1000} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{200}+\frac{196}{5000}=X
Do the multiplications in the fraction \frac{4\times 49}{5\times 1000}.
\frac{3}{200}+\frac{49}{1250}=X
Reduce the fraction \frac{196}{5000} to lowest terms by extracting and canceling out 4.
\frac{75}{5000}+\frac{196}{5000}=X
Least common multiple of 200 and 1250 is 5000. Convert \frac{3}{200} and \frac{49}{1250} to fractions with denominator 5000.
\frac{75+196}{5000}=X
Since \frac{75}{5000} and \frac{196}{5000} have the same denominator, add them by adding their numerators.
\frac{271}{5000}=X
Add 75 and 196 to get 271.
X=\frac{271}{5000}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}