E \% = ( \frac { X _ { 2 } - X _ { 1 } } { X _ { 1 } } - \frac { Y _ { 2 } - Y _ { 1 } } { Y _ { 1 } } ) \times 100 \%
Solve for E
E=\frac{100\left(X_{2}Y_{1}-X_{1}Y_{2}\right)}{X_{1}Y_{1}}
Y_{1}\neq 0\text{ and }X_{1}\neq 0
Solve for X_1
\left\{\begin{matrix}X_{1}=\frac{100X_{2}Y_{1}}{EY_{1}+100Y_{2}}\text{, }&Y_{1}\neq 0\text{ and }X_{2}\neq 0\text{ and }E\neq -\frac{100Y_{2}}{Y_{1}}\text{ and }Y_{2}\neq -\frac{EY_{1}}{100}\\X_{1}\neq 0\text{, }&X_{2}=0\text{ and }Y_{2}=-\frac{EY_{1}}{100}\text{ and }Y_{1}\neq 0\end{matrix}\right.
Share
Copied to clipboard
X_{1}Y_{1}E=\left(\frac{X_{2}-X_{1}}{X_{1}}-\frac{Y_{2}-Y_{1}}{Y_{1}}\right)X_{1}Y_{1}\times 100
Multiply both sides of the equation by 100X_{1}Y_{1}, the least common multiple of 100,X_{1},Y_{1}.
X_{1}Y_{1}E=\left(\frac{\left(X_{2}-X_{1}\right)Y_{1}}{X_{1}Y_{1}}-\frac{\left(Y_{2}-Y_{1}\right)X_{1}}{X_{1}Y_{1}}\right)X_{1}Y_{1}\times 100
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of X_{1} and Y_{1} is X_{1}Y_{1}. Multiply \frac{X_{2}-X_{1}}{X_{1}} times \frac{Y_{1}}{Y_{1}}. Multiply \frac{Y_{2}-Y_{1}}{Y_{1}} times \frac{X_{1}}{X_{1}}.
X_{1}Y_{1}E=\frac{\left(X_{2}-X_{1}\right)Y_{1}-\left(Y_{2}-Y_{1}\right)X_{1}}{X_{1}Y_{1}}X_{1}Y_{1}\times 100
Since \frac{\left(X_{2}-X_{1}\right)Y_{1}}{X_{1}Y_{1}} and \frac{\left(Y_{2}-Y_{1}\right)X_{1}}{X_{1}Y_{1}} have the same denominator, subtract them by subtracting their numerators.
X_{1}Y_{1}E=\frac{X_{2}Y_{1}-X_{1}Y_{1}-Y_{2}X_{1}+Y_{1}X_{1}}{X_{1}Y_{1}}X_{1}Y_{1}\times 100
Do the multiplications in \left(X_{2}-X_{1}\right)Y_{1}-\left(Y_{2}-Y_{1}\right)X_{1}.
X_{1}Y_{1}E=\frac{-Y_{2}X_{1}+X_{2}Y_{1}}{X_{1}Y_{1}}X_{1}Y_{1}\times 100
Combine like terms in X_{2}Y_{1}-X_{1}Y_{1}-Y_{2}X_{1}+Y_{1}X_{1}.
X_{1}Y_{1}E=\frac{\left(-Y_{2}X_{1}+X_{2}Y_{1}\right)X_{1}}{X_{1}Y_{1}}Y_{1}\times 100
Express \frac{-Y_{2}X_{1}+X_{2}Y_{1}}{X_{1}Y_{1}}X_{1} as a single fraction.
X_{1}Y_{1}E=\frac{-X_{1}Y_{2}+X_{2}Y_{1}}{Y_{1}}Y_{1}\times 100
Cancel out X_{1} in both numerator and denominator.
X_{1}Y_{1}E=\frac{\left(-X_{1}Y_{2}+X_{2}Y_{1}\right)Y_{1}}{Y_{1}}\times 100
Express \frac{-X_{1}Y_{2}+X_{2}Y_{1}}{Y_{1}}Y_{1} as a single fraction.
X_{1}Y_{1}E=\left(-X_{1}Y_{2}+X_{2}Y_{1}\right)\times 100
Cancel out Y_{1} in both numerator and denominator.
X_{1}Y_{1}E=-100Y_{2}X_{1}+100X_{2}Y_{1}
Use the distributive property to multiply -X_{1}Y_{2}+X_{2}Y_{1} by 100.
X_{1}Y_{1}E=100X_{2}Y_{1}-100X_{1}Y_{2}
The equation is in standard form.
\frac{X_{1}Y_{1}E}{X_{1}Y_{1}}=\frac{100X_{2}Y_{1}-100X_{1}Y_{2}}{X_{1}Y_{1}}
Divide both sides by Y_{1}X_{1}.
E=\frac{100X_{2}Y_{1}-100X_{1}Y_{2}}{X_{1}Y_{1}}
Dividing by Y_{1}X_{1} undoes the multiplication by Y_{1}X_{1}.
E=\frac{100X_{2}}{X_{1}}-\frac{100Y_{2}}{Y_{1}}
Divide -100Y_{2}X_{1}+100X_{2}Y_{1} by Y_{1}X_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}