Solve for n
\left\{\begin{matrix}n=\frac{Et}{ϕ}\text{, }&ϕ\neq 0\text{ and }\Delta \neq 0\text{ and }t\neq 0\\n\in \mathrm{R}\text{, }&E=0\text{ and }ϕ=0\text{ and }\Delta \neq 0\text{ and }t\neq 0\end{matrix}\right.
Solve for E
E=\frac{nϕ}{t}
\Delta \neq 0\text{ and }t\neq 0
Share
Copied to clipboard
Et\Delta =n\Delta ϕ
Multiply both sides of the equation by t\Delta .
n\Delta ϕ=Et\Delta
Swap sides so that all variable terms are on the left hand side.
\Delta ϕn=Et\Delta
The equation is in standard form.
\frac{\Delta ϕn}{\Delta ϕ}=\frac{Et\Delta }{\Delta ϕ}
Divide both sides by \Delta ϕ.
n=\frac{Et\Delta }{\Delta ϕ}
Dividing by \Delta ϕ undoes the multiplication by \Delta ϕ.
n=\frac{Et}{ϕ}
Divide Et\Delta by \Delta ϕ.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}