Solve for E
E=\frac{63c_{1}}{4882812500000000000}
Solve for c_1
c_{1}=\frac{4882812500000000000E}{63}
Share
Copied to clipboard
E=c_{1}\times 63\times \frac{1}{10000000000000000000000000000000000}\times \frac{3000000}{750\times 20^{-9}}
Calculate 10 to the power of -34 and get \frac{1}{10000000000000000000000000000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{750\times 20^{-9}}
Multiply 63 and \frac{1}{10000000000000000000000000000000000} to get \frac{63}{10000000000000000000000000000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{750\times \frac{1}{512000000000}}
Calculate 20 to the power of -9 and get \frac{1}{512000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{\frac{3}{2048000000}}
Multiply 750 and \frac{1}{512000000000} to get \frac{3}{2048000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times 3000000\times \frac{2048000000}{3}
Divide 3000000 by \frac{3}{2048000000} by multiplying 3000000 by the reciprocal of \frac{3}{2048000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times 2048000000000000
Multiply 3000000 and \frac{2048000000}{3} to get 2048000000000000.
E=c_{1}\times \frac{63}{4882812500000000000}
Multiply \frac{63}{10000000000000000000000000000000000} and 2048000000000000 to get \frac{63}{4882812500000000000}.
E=c_{1}\times 63\times \frac{1}{10000000000000000000000000000000000}\times \frac{3000000}{750\times 20^{-9}}
Calculate 10 to the power of -34 and get \frac{1}{10000000000000000000000000000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{750\times 20^{-9}}
Multiply 63 and \frac{1}{10000000000000000000000000000000000} to get \frac{63}{10000000000000000000000000000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{750\times \frac{1}{512000000000}}
Calculate 20 to the power of -9 and get \frac{1}{512000000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times \frac{3000000}{\frac{3}{2048000000}}
Multiply 750 and \frac{1}{512000000000} to get \frac{3}{2048000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times 3000000\times \frac{2048000000}{3}
Divide 3000000 by \frac{3}{2048000000} by multiplying 3000000 by the reciprocal of \frac{3}{2048000000}.
E=c_{1}\times \frac{63}{10000000000000000000000000000000000}\times 2048000000000000
Multiply 3000000 and \frac{2048000000}{3} to get 2048000000000000.
E=c_{1}\times \frac{63}{4882812500000000000}
Multiply \frac{63}{10000000000000000000000000000000000} and 2048000000000000 to get \frac{63}{4882812500000000000}.
c_{1}\times \frac{63}{4882812500000000000}=E
Swap sides so that all variable terms are on the left hand side.
\frac{63}{4882812500000000000}c_{1}=E
The equation is in standard form.
\frac{\frac{63}{4882812500000000000}c_{1}}{\frac{63}{4882812500000000000}}=\frac{E}{\frac{63}{4882812500000000000}}
Divide both sides of the equation by \frac{63}{4882812500000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
c_{1}=\frac{E}{\frac{63}{4882812500000000000}}
Dividing by \frac{63}{4882812500000000000} undoes the multiplication by \frac{63}{4882812500000000000}.
c_{1}=\frac{4882812500000000000E}{63}
Divide E by \frac{63}{4882812500000000000} by multiplying E by the reciprocal of \frac{63}{4882812500000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}