Solve for p_1
\left\{\begin{matrix}p_{1}=\frac{p_{2}y^{2}}{y^{2}+E}\text{, }&p_{2}\neq 0\text{ and }y\neq 0\text{ and }E\neq -y^{2}\\p_{1}\neq 0\text{, }&\left(E=0\text{ and }y=0\right)\text{ or }\left(p_{2}=0\text{ and }E=-y^{2}\text{ and }y\neq 0\right)\end{matrix}\right.
Solve for E
E=-\frac{\left(p_{1}-p_{2}\right)y^{2}}{p_{1}}
p_{1}\neq 0
Share
Copied to clipboard
Ep_{1}=\left(p_{2}-p_{1}\right)yy
Variable p_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p_{1}.
Ep_{1}=\left(p_{2}-p_{1}\right)y^{2}
Multiply y and y to get y^{2}.
Ep_{1}=p_{2}y^{2}-p_{1}y^{2}
Use the distributive property to multiply p_{2}-p_{1} by y^{2}.
Ep_{1}+p_{1}y^{2}=p_{2}y^{2}
Add p_{1}y^{2} to both sides.
\left(E+y^{2}\right)p_{1}=p_{2}y^{2}
Combine all terms containing p_{1}.
\left(y^{2}+E\right)p_{1}=p_{2}y^{2}
The equation is in standard form.
\frac{\left(y^{2}+E\right)p_{1}}{y^{2}+E}=\frac{p_{2}y^{2}}{y^{2}+E}
Divide both sides by E+y^{2}.
p_{1}=\frac{p_{2}y^{2}}{y^{2}+E}
Dividing by E+y^{2} undoes the multiplication by E+y^{2}.
p_{1}=\frac{p_{2}y^{2}}{y^{2}+E}\text{, }p_{1}\neq 0
Variable p_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}