Solve for Q
Q=4\pi E\left(r\epsilon _{0}\right)^{2}
r\neq 0\text{ and }\epsilon _{0}\neq 0
Solve for E
E=\frac{Q}{4\pi \left(r\epsilon _{0}\right)^{2}}
r\neq 0\text{ and }\epsilon _{0}\neq 0
Share
Copied to clipboard
E=\frac{Q}{4\pi \epsilon _{0}^{2}r^{2}}
Multiply \epsilon _{0} and \epsilon _{0} to get \epsilon _{0}^{2}.
\frac{Q}{4\pi \epsilon _{0}^{2}r^{2}}=E
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4\pi r^{2}\epsilon _{0}^{2}}Q=E
The equation is in standard form.
\frac{\frac{1}{4\pi r^{2}\epsilon _{0}^{2}}Q\times 4\pi r^{2}\epsilon _{0}^{2}}{1}=\frac{E\times 4\pi r^{2}\epsilon _{0}^{2}}{1}
Divide both sides by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-2}r^{-2}.
Q=\frac{E\times 4\pi r^{2}\epsilon _{0}^{2}}{1}
Dividing by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-2}r^{-2} undoes the multiplication by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-2}r^{-2}.
Q=4\pi Er^{2}\epsilon _{0}^{2}
Divide E by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-2}r^{-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}