Skip to main content
Solve for Q
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

\frac{Q}{4\pi \epsilon _{0}\epsilon _{α}r^{2}}=E
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4\pi \epsilon _{0}\epsilon _{α}r^{2}}Q=E
The equation is in standard form.
\frac{\frac{1}{4\pi \epsilon _{0}\epsilon _{α}r^{2}}Q\times 4\pi \epsilon _{0}\epsilon _{α}r^{2}}{1}=\frac{E\times 4\pi \epsilon _{0}\epsilon _{α}r^{2}}{1}
Divide both sides by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-1}\epsilon _{α}^{-1}r^{-2}.
Q=\frac{E\times 4\pi \epsilon _{0}\epsilon _{α}r^{2}}{1}
Dividing by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-1}\epsilon _{α}^{-1}r^{-2} undoes the multiplication by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-1}\epsilon _{α}^{-1}r^{-2}.
Q=4\pi E\epsilon _{0}\epsilon _{α}r^{2}
Divide E by \frac{1}{4}\pi ^{-1}\epsilon _{0}^{-1}\epsilon _{α}^{-1}r^{-2}.