Skip to main content
Solve for E
Tick mark Image
Assign E
Tick mark Image

Similar Problems from Web Search

Share

E=\frac{9\times 10^{3}\times 2\times 2\times 10^{-2}\times 5\times 10^{-2}}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
E=\frac{9\times 10^{1}\times 2\times 2\times 5\times 10^{-2}}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
E=\frac{9\times 10^{-1}\times 2\times 2\times 5}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 1 and -2 to get -1.
E=\frac{9\times \frac{1}{10}\times 2\times 2\times 5}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Calculate 10 to the power of -1 and get \frac{1}{10}.
E=\frac{\frac{9}{10}\times 2\times 2\times 5}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Multiply 9 and \frac{1}{10} to get \frac{9}{10}.
E=\frac{\frac{9}{5}\times 2\times 5}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Multiply \frac{9}{10} and 2 to get \frac{9}{5}.
E=\frac{\frac{18}{5}\times 5}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Multiply \frac{9}{5} and 2 to get \frac{18}{5}.
E=\frac{18}{\left(\left(5\times 10^{-2}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Multiply \frac{18}{5} and 5 to get 18.
E=\frac{18}{\left(\left(5\times \frac{1}{100}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
E=\frac{18}{\left(\left(\frac{1}{20}\right)^{2}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Multiply 5 and \frac{1}{100} to get \frac{1}{20}.
E=\frac{18}{\left(\frac{1}{400}-\left(0.5\times 10^{-2}\right)^{2}\right)^{2}}
Calculate \frac{1}{20} to the power of 2 and get \frac{1}{400}.
E=\frac{18}{\left(\frac{1}{400}-\left(0.5\times \frac{1}{100}\right)^{2}\right)^{2}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
E=\frac{18}{\left(\frac{1}{400}-\left(\frac{1}{200}\right)^{2}\right)^{2}}
Multiply 0.5 and \frac{1}{100} to get \frac{1}{200}.
E=\frac{18}{\left(\frac{1}{400}-\frac{1}{40000}\right)^{2}}
Calculate \frac{1}{200} to the power of 2 and get \frac{1}{40000}.
E=\frac{18}{\left(\frac{99}{40000}\right)^{2}}
Subtract \frac{1}{40000} from \frac{1}{400} to get \frac{99}{40000}.
E=\frac{18}{\frac{9801}{1600000000}}
Calculate \frac{99}{40000} to the power of 2 and get \frac{9801}{1600000000}.
E=18\times \frac{1600000000}{9801}
Divide 18 by \frac{9801}{1600000000} by multiplying 18 by the reciprocal of \frac{9801}{1600000000}.
E=\frac{3200000000}{1089}
Multiply 18 and \frac{1600000000}{9801} to get \frac{3200000000}{1089}.