Solve for J (complex solution)
\left\{\begin{matrix}J=\frac{1600000000000000000E}{221cy}\text{, }&c\neq 0\text{ and }y\neq 0\text{ and }m\neq 0\\J\in \mathrm{C}\text{, }&\left(c=0\text{ or }y=0\right)\text{ and }E=0\text{ and }m\neq 0\end{matrix}\right.
Solve for E
E=\frac{221Jcy}{1600000000000000000}
m\neq 0
Solve for J
\left\{\begin{matrix}J=\frac{1600000000000000000E}{221cy}\text{, }&c\neq 0\text{ and }y\neq 0\text{ and }m\neq 0\\J\in \mathrm{R}\text{, }&\left(c=0\text{ or }y=0\right)\text{ and }E=0\text{ and }m\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Cancel out m in both numerator and denominator.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Multiply 5 and 6.63 to get 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Multiply 33.15 and 300 to get 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Calculate 10 to the power of 19 and get 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Multiply 7.2 and 10000000000000000000 to get 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Divide 9945Jcy by 72000000000000000000 to get \frac{221}{1600000000000000000}Jcy.
\frac{221}{1600000000000000000}Jcy=E
Swap sides so that all variable terms are on the left hand side.
\frac{221cy}{1600000000000000000}J=E
The equation is in standard form.
\frac{1600000000000000000\times \frac{221cy}{1600000000000000000}J}{221cy}=\frac{1600000000000000000E}{221cy}
Divide both sides by \frac{221}{1600000000000000000}cy.
J=\frac{1600000000000000000E}{221cy}
Dividing by \frac{221}{1600000000000000000}cy undoes the multiplication by \frac{221}{1600000000000000000}cy.
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Cancel out m in both numerator and denominator.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Multiply 5 and 6.63 to get 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Multiply 33.15 and 300 to get 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Calculate 10 to the power of 19 and get 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Multiply 7.2 and 10000000000000000000 to get 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Divide 9945Jcy by 72000000000000000000 to get \frac{221}{1600000000000000000}Jcy.
E=\frac{6.63\times 10^{-26}J\times 5\times 300myc}{7.2\times 10^{-7}m}
To multiply powers of the same base, add their exponents. Add -34 and 8 to get -26.
E=\frac{5\times 6.63\times 300\times 10^{-26}Jcy}{7.2\times 10^{-7}}
Cancel out m in both numerator and denominator.
E=\frac{5\times 6.63\times 300Jcy}{7.2\times 10^{19}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
E=\frac{33.15\times 300Jcy}{7.2\times 10^{19}}
Multiply 5 and 6.63 to get 33.15.
E=\frac{9945Jcy}{7.2\times 10^{19}}
Multiply 33.15 and 300 to get 9945.
E=\frac{9945Jcy}{7.2\times 10000000000000000000}
Calculate 10 to the power of 19 and get 10000000000000000000.
E=\frac{9945Jcy}{72000000000000000000}
Multiply 7.2 and 10000000000000000000 to get 72000000000000000000.
E=\frac{221}{1600000000000000000}Jcy
Divide 9945Jcy by 72000000000000000000 to get \frac{221}{1600000000000000000}Jcy.
\frac{221}{1600000000000000000}Jcy=E
Swap sides so that all variable terms are on the left hand side.
\frac{221cy}{1600000000000000000}J=E
The equation is in standard form.
\frac{1600000000000000000\times \frac{221cy}{1600000000000000000}J}{221cy}=\frac{1600000000000000000E}{221cy}
Divide both sides by \frac{221}{1600000000000000000}cy.
J=\frac{1600000000000000000E}{221cy}
Dividing by \frac{221}{1600000000000000000}cy undoes the multiplication by \frac{221}{1600000000000000000}cy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}