E = \frac { 2 / 3 + 4,8 } { M }

$E=M2/3+4,8 $

Solve for M

M=\frac{82}{15E},E\neq 0

$M=15E82 ,E =0$

Solve for E

E=\frac{82}{15M},M\neq 0

$E=15M82 ,M =0$

Assign E

E≔\frac{82}{15M}

$E:=15M82 $

Still have questions?

Ask a tutor instantly - for free

Share

Copy

Copied to clipboard

EM=\frac{2}{3}+4.8

Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by M.

EM=\frac{82}{15}

Add \frac{2}{3}\approx 0.666666667 and 4.8 to get \frac{82}{15}\approx 5.466666667.

\frac{EM}{E}=\frac{\frac{82}{15}}{E}

Divide both sides by E.

M=\frac{\frac{82}{15}}{E}

Dividing by E undoes the multiplication by E.

M=\frac{82}{15E}

Divide \frac{82}{15}\approx 5.466666667 by E.

M=\frac{82}{15E}\text{, }M\neq 0

Variable M cannot be equal to 0.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $