Skip to main content
Solve for E
Tick mark Image
Assign E
Tick mark Image

Similar Problems from Web Search

Share

E=\frac{\left(5-2\sqrt{6}\right)\left(\sqrt{75}+\sqrt{50}\right)}{\sqrt{75}-\sqrt{50}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+\sqrt{50}\right)}{\sqrt{75}-\sqrt{50}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{\sqrt{75}-\sqrt{50}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{5\sqrt{3}-\sqrt{50}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{5\sqrt{3}-5\sqrt{2}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{\left(5\sqrt{3}-5\sqrt{2}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}
Rationalize the denominator of \frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{5\sqrt{3}-5\sqrt{2}} by multiplying numerator and denominator by 5\sqrt{3}+5\sqrt{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)\left(5\sqrt{3}+5\sqrt{2}\right)}{\left(5\sqrt{3}\right)^{2}-\left(-5\sqrt{2}\right)^{2}}
Consider \left(5\sqrt{3}-5\sqrt{2}\right)\left(5\sqrt{3}+5\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{\left(5\sqrt{3}\right)^{2}-\left(-5\sqrt{2}\right)^{2}}
Multiply 5\sqrt{3}+5\sqrt{2} and 5\sqrt{3}+5\sqrt{2} to get \left(5\sqrt{3}+5\sqrt{2}\right)^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{5^{2}\left(\sqrt{3}\right)^{2}-\left(-5\sqrt{2}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{25\left(\sqrt{3}\right)^{2}-\left(-5\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{25\times 3-\left(-5\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{75-\left(-5\sqrt{2}\right)^{2}}
Multiply 25 and 3 to get 75.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{75-\left(-5\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-5\sqrt{2}\right)^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{75-25\left(\sqrt{2}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{75-25\times 2}
The square of \sqrt{2} is 2.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{75-50}
Multiply 25 and 2 to get 50.
E=\frac{\left(5-2\sqrt{6}\right)\left(5\sqrt{3}+5\sqrt{2}\right)^{2}}{25}
Subtract 50 from 75 to get 25.
E=\frac{\left(5-2\sqrt{6}\right)\left(25\left(\sqrt{3}\right)^{2}+50\sqrt{3}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)}{25}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5\sqrt{3}+5\sqrt{2}\right)^{2}.
E=\frac{\left(5-2\sqrt{6}\right)\left(25\times 3+50\sqrt{3}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)}{25}
The square of \sqrt{3} is 3.
E=\frac{\left(5-2\sqrt{6}\right)\left(75+50\sqrt{3}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)}{25}
Multiply 25 and 3 to get 75.
E=\frac{\left(5-2\sqrt{6}\right)\left(75+50\sqrt{6}+25\left(\sqrt{2}\right)^{2}\right)}{25}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
E=\frac{\left(5-2\sqrt{6}\right)\left(75+50\sqrt{6}+25\times 2\right)}{25}
The square of \sqrt{2} is 2.
E=\frac{\left(5-2\sqrt{6}\right)\left(75+50\sqrt{6}+50\right)}{25}
Multiply 25 and 2 to get 50.
E=\frac{\left(5-2\sqrt{6}\right)\left(125+50\sqrt{6}\right)}{25}
Add 75 and 50 to get 125.
E=\frac{625+250\sqrt{6}-250\sqrt{6}-100\left(\sqrt{6}\right)^{2}}{25}
Apply the distributive property by multiplying each term of 5-2\sqrt{6} by each term of 125+50\sqrt{6}.
E=\frac{625-100\left(\sqrt{6}\right)^{2}}{25}
Combine 250\sqrt{6} and -250\sqrt{6} to get 0.
E=\frac{625-100\times 6}{25}
The square of \sqrt{6} is 6.
E=\frac{625-600}{25}
Multiply -100 and 6 to get -600.
E=\frac{25}{25}
Subtract 600 from 625 to get 25.
E=1
Divide 25 by 25 to get 1.