Solve for E
E=\sqrt{6}+3\sqrt{2}-2\sqrt{3}-2\approx 1.228028815
Assign E
E≔\sqrt{6}+3\sqrt{2}-2\sqrt{3}-2
Share
Copied to clipboard
E=\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
E=\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
E=\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
E=\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
E=-\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
E=-\left(\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{3}+\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Apply the distributive property by multiplying each term of \sqrt{2}+\sqrt{6} by each term of \sqrt{2}-\sqrt{3}.
E=-\left(2-\sqrt{2}\sqrt{3}+\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
The square of \sqrt{2} is 2.
E=-\left(2-\sqrt{6}+\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
E=-\left(2-\sqrt{6}+\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
E=-\left(2-\sqrt{6}+2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
E=-\left(2-\sqrt{6}+2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
E=-\left(2-\sqrt{6}+2\sqrt{3}-3\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
E=-2-\left(-\sqrt{6}\right)-2\sqrt{3}-\left(-3\sqrt{2}\right)
To find the opposite of 2-\sqrt{6}+2\sqrt{3}-3\sqrt{2}, find the opposite of each term.
E=-2+\sqrt{6}-2\sqrt{3}-\left(-3\sqrt{2}\right)
The opposite of -\sqrt{6} is \sqrt{6}.
E=-2+\sqrt{6}-2\sqrt{3}+3\sqrt{2}
The opposite of -3\sqrt{2} is 3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}