Solve for E
E = \frac{108}{77} = 1\frac{31}{77} \approx 1.402597403
Assign E
E≔\frac{108}{77}
Share
Copied to clipboard
E=\frac{\frac{42}{35}-\frac{15}{35}}{\frac{4}{3}+\frac{1}{2}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Least common multiple of 5 and 7 is 35. Convert \frac{6}{5} and \frac{3}{7} to fractions with denominator 35.
E=\frac{\frac{42-15}{35}}{\frac{4}{3}+\frac{1}{2}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Since \frac{42}{35} and \frac{15}{35} have the same denominator, subtract them by subtracting their numerators.
E=\frac{\frac{27}{35}}{\frac{4}{3}+\frac{1}{2}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Subtract 15 from 42 to get 27.
E=\frac{\frac{27}{35}}{\frac{8}{6}+\frac{3}{6}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
E=\frac{\frac{27}{35}}{\frac{8+3}{6}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
E=\frac{\frac{27}{35}}{\frac{11}{6}}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Add 8 and 3 to get 11.
E=\frac{27}{35}\times \frac{6}{11}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Divide \frac{27}{35} by \frac{11}{6} by multiplying \frac{27}{35} by the reciprocal of \frac{11}{6}.
E=\frac{27\times 6}{35\times 11}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Multiply \frac{27}{35} times \frac{6}{11} by multiplying numerator times numerator and denominator times denominator.
E=\frac{162}{385}\times \frac{-\frac{1}{2}+\frac{4}{3}}{\frac{5}{4}-1}
Do the multiplications in the fraction \frac{27\times 6}{35\times 11}.
E=\frac{162}{385}\times \frac{-\frac{3}{6}+\frac{8}{6}}{\frac{5}{4}-1}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
E=\frac{162}{385}\times \frac{\frac{-3+8}{6}}{\frac{5}{4}-1}
Since -\frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
E=\frac{162}{385}\times \frac{\frac{5}{6}}{\frac{5}{4}-1}
Add -3 and 8 to get 5.
E=\frac{162}{385}\times \frac{\frac{5}{6}}{\frac{5}{4}-\frac{4}{4}}
Convert 1 to fraction \frac{4}{4}.
E=\frac{162}{385}\times \frac{\frac{5}{6}}{\frac{5-4}{4}}
Since \frac{5}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
E=\frac{162}{385}\times \frac{\frac{5}{6}}{\frac{1}{4}}
Subtract 4 from 5 to get 1.
E=\frac{162}{385}\times \frac{5}{6}\times 4
Divide \frac{5}{6} by \frac{1}{4} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{4}.
E=\frac{162}{385}\times \frac{5\times 4}{6}
Express \frac{5}{6}\times 4 as a single fraction.
E=\frac{162}{385}\times \frac{20}{6}
Multiply 5 and 4 to get 20.
E=\frac{162}{385}\times \frac{10}{3}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
E=\frac{162\times 10}{385\times 3}
Multiply \frac{162}{385} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
E=\frac{1620}{1155}
Do the multiplications in the fraction \frac{162\times 10}{385\times 3}.
E=\frac{108}{77}
Reduce the fraction \frac{1620}{1155} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}